CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT BASED REVISION NOTES) GANESH KUMAR DATE:- 11/01/2022

Coordination Compounds

Difference between coordination compound and double bond:

Coordination compound	Double salt
A coordination compound contains a	When two salts in stoichiometric ratio
central metal atom or ion surrounded	are crystallized together from their
by number of oppositely charged ions	saturated solution they are called
or neutral molecules. These ions or	double salts
molecules re bonded to the metal	Example: FeSO4 (NH4)2SO4 6H2O
atom or ion by a coordinate bond.	
Example: K ₄ [Fe(CN) ₆]	(Mohr's salt)
They do not dissociate into simple	They dissociate into simple ions when
ions when dissolved in water.	dissolved in water.

- Coordination entity: A coordination entity constitutes a central metal atom or ion bonded to a fixed number of ions or molecules. Example: in K₄[Fe(CN)₆], [Fe(CN)₆]⁴⁻ represents coordination entity.
- 2. Central atom or ion: In a coordination entity, the atom/ion to which a fixed number of ions/groups are bound in a definite geometrical arrangement around it, is called the central atom or ion. E.g.: in K₄[Fe(CN)₆], Fe²⁺ is the central metal ion.
- 3. Ligands: A molecule, ion or group that is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is called ligand. It may be neutral, positively or negatively charged. Example: H₂O, CN⁻, NO⁺ etc.

- 4. Donor atom: An atom of the ligand attached directly to the metal is called the donor atom. For example: in the complex K₄[Fe(CN)₆], carbon is a donor atom.
- 5. Coordination number: The coordination number (CN) of a metal ion in a complex can be defined as the number of ligand donor atoms to which the metal is directly bonded. For example: in the complex K₄[Fe(CN)₆], the coordination number of Fe is 6.
- 6. Coordination sphere: The central atom/ion and the ligands attached to it are enclosed in square bracket and is collectively termed as the coordination sphere. For example: in the complex K₄[Fe(CN)₆], [Fe(CN)₆]⁴⁻ is the coordination sphere.
- 7. Counter ions: The ions present outside the coordination sphere are called counter ions. For example: in the complex K₄[Fe(CN)₆], K⁺ is the counter ion.
- 8. Coordination polyhedron: The spatial arrangement of the ligand atoms which are directly attached to the central atom/ ion defines a coordination polyhedron about the central atom. The most common coordination polyhedra are octahedral, square planar and tetrahedral. For example: [PtCl₄]²⁻ is square planar, Ni(CO)₄ is tetrahedral while [Cu(NH₃)₆]³⁺ is octahedral.
- 9. Charge on the complex ion: The charge on the complex ion is equal to the algebraic sum of the charges on all the ligands coordinated to the central metal ion.

- **10. Denticity:** The number of legating (linking) atoms present in ligand is called denticity.
- **11. Unidentate ligands:** The ligands whose only one donor atom is bonded to metal atom are called unidentate ligands. Example: H₂O, NH₃, CO, CN⁻
- **12. Didentate ligands:** The ligands which contain two donor atoms or ions through which they are bonded to the metal ion. For example: ethylene diamine (H₂NCH₂CH₂NH₂) has two nitrogen atoms,
- **13. Polydentate ligand:** When several donor atoms are present in a single ligand, the ligand is called polydentate ligand.

For example: in N(CH₂CH₂NH₂)₃, the ligand is said to be polydentate. Ethylenediaminetetraacetate ion (EDTA^{4–}) is an important hexadentate ligand. It can bind through two nitrogen and four oxygen atoms to a central metal ion.

- 14. Chelate: An inorganic metal complex in which there is a close ring of atoms caused by attachment of a ligand to a metal atom at two points. An example is the complex ion formed between ethylene diamine and cupric ion, [Cu(NH₂CH₂NH₂)₂]²⁺.
- 15. Ambidentate ligand: Ligands which can legate (link) through two different atoms present in it are called Ambidentate ligand. Example: NO₂⁻,and SCN⁻. NO₂⁻ can link through N as well as O while SCN⁻ can link through S as well as N atom.